Preparation of ¹⁸F-labeled aromatic amino acids by copper-mediated radiofluorination

Daniel Modemann¹, Boris D. Zlatopolskiy², Bernd Neumaier^{1,2}, Johannes Ermert¹

- 1 Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry, Jülich, Germany
- 2 Uniklinik Köln, Institute of Radiochemistry and Experimental Molecular Imaging, Cologne, Germany

Objectives: [¹⁸F]Fluorophenylamino acids exhibit great potential for diagnostic applications using PET. Nevertheless, their clinical application is still strongly restricted owing to cumbersome production methods. Recently novel transition metal-mediated ¹⁸F-fluorination methods have been introduced into radiochemistry enabling to achieve radiofluorination of arenes regardless of their electronic properties [1]. The aim of this work was to develop a method for the efficient production of ¹⁸F-labeled aromatic amino acids in high doses by means of alcohol-enhanced Cu(II)-mediated radiofluorination of arylboronic acid pinacol esters (PBE) [2].

Methods: The PBE precursors were synthesized by Miyaura borylation of the corresponding N-BOC protected iodoaromatic amino acid esters. The synthesis of $6-[^{18}F]FDOPA$, $L-2-[^{18}F]fluorophenylalanine$ ($2-[^{18}F]FPhe$), $6-[^{18}F]fluoro-L-meta$ -tyrosine ($6-[^{18}F]FMT$) and $5-[^{18}F]fluoro-L-meta$ -tyrosine ($5-[^{18}F]FMT$) were performed with (py)₄Cu(II)(OTf)₂ as catalyst. The labeling conditions were optimized with respect to temperature, solvent and amount of (py)₄Cu(II)(OTf)₂. The intermediates were purified by SPE and hydrolyzed with HCl affording after HPLC-purification the desired product.

Results: The precursors for radiolabeling were synthesized in overall yields of 3 to 17 %. The ¹⁸F-labelling reactions were performed using *n*-butanol as a co-solvent improving the RCYs significantly. In the case of 6-[¹⁸F]fluoro-L-3,4-dihydroxyphenylalanine (6-[¹⁸F]FDOPA), RCY increased from 8 % (without the use of n-butanol for alcohol enhancement) to 40 % using alcohol-enhanced Cu(II)-mediated radiofluorination. Furthermore, the radiosynthesis of 2-[¹⁸F]FPhe, 6-[¹⁸F]FMT and 5-[¹⁸F]FMT using boronic acid pinacol esters was transferred to a remote-controlled synthesis device. High RCYs lead to product activities of 2.4–18.8 GBq enabling preclinical studies.

Conclusions: The combination of alcohol—enhanced and copper-mediated radiofluorination of BPE as labelling precursors was studied with regard to the automated synthesis of several aromatic amino acids. $6-[^{18}F]FDOPA$, $2-[^{18}F]FPhe$, $6-[^{18}F]fluoro-L-meta$ -tyrosine ($6-[^{18}F]FMT$) and $5-[^{18}F]fluoro-L-meta$ -tyrosine ($5-[^{18}F]FMT$) were obtained in high RCY of 40-66% and up to > 99% ee. This enables their synthesis in large amount of radioactivity and high radiochemical and enantiomeric purity, which is necessary for their use in preclinical studies.

Research support: This work was supported by the DFG grant ZL 65/1-1.

References: [1] S. Preshlock, M. Tredwell, V. Gouverneur, *Chem. Rev.* **2016**, *116*, 719-766. [2] J. Zischler, N. Kolks, D. Modemann, B. Neumaier, B. D. Zlatopolskiy, *Chem. - Eur. J.* **2017**, *23*, 3251-3256.

BocO
$$(P)_4$$
Cu(II)(OTf)₂ $(P)_4$ Cu(III)(OTf)₂ $(P)_4$ Cu(III)(OTf)₃ $(P)_4$ Cu(III)(OTf)₄C